I. Fundamental Group and Covering Spaces

A. Fundamental Group

the basic idea is to "probe the topology of a space with loops mapped into the space"

intuitively any loop in 5² can be "shrunk to a point" 1.2. homotoped to a constant loop

but there are loops in $T^2 = ($

that get "caught on the topology" and cannot be shrunk. find "holes" in the space

rigorously, as we said above the fundamental group of a topological space X with a base point $x_0 \in X$ is $\pi_1(X, x_0) = [S', X]_0$ homotopy classes of $\pi_1(X, x_0) = [S', X]_0$ based maps from S' to X

we wont to see a group structure on this, to this end we need <u>exercise</u>: let s'cl?be the unit circle

$$\begin{array}{l} \rho: [o, 1] \rightarrow S' \\ t \mapsto (\cos 2\pi t, \sin 2\pi t) \end{array}$$
is a quotient map (i.e. can think of S' as $[o, 1]$ with end pts
identified)
moreover, there is a one-to-one correspondence
between $\forall: ([o, 1], [o, 1]) \rightarrow (X, x_0)$ call this a based loop
and $\widehat{\forall}: (S', [(1, 0)]) \rightarrow (X, x_0)$
(given by $\widehat{\forall} \circ p = \forall$)

so
$$[5'_{1} \times]_{0}$$
 is the same as $[([z_{0}, 1], [a, i]), (X, x_{0})]$ homotopy, relend pts,
classes of loops in X based at x_{0}
if Y_{1}, Y_{2} are two loops based at x_{0} then its homotopy class is
denoted $[T^{3}]$
if Y_{1}, Y_{2} are two loops based at x_{0} then define
 $Y_{1} * Y_{2}$ to be the loop
 $Y_{1} * Y_{2}$: $[z_{0,1}] \rightarrow X: t \mapsto \begin{cases} Y(z_{1}) & 0 \le t \le Y_{2} \\ Y(z_{1}-1) & Y_{2} \le t \le 1 \end{cases}$
is go around Y_{1} then around Y_{2} .
 $Y_{1} * Y_{0}$ is clearly well-defined on loops, but is it well-defined on
homotopy classes of loops?
let $T_{1} \sim T_{2}$ by homotopy $H: [z_{0,1}] \times [z_{0,1}] \rightarrow X$
we need to find a homotopy $T_{1} * S_{1}$ to $Y_{2} * S_{2}$
that is a map $H: [z_{0,1}] \times [z_{0,1}] \rightarrow X$ st $H(t_{1,0}] = T_{1} * S_{1}$
 $H = x_{1} \sum_{Y_{1} \times S_{2}} x_{1} \longrightarrow X$
we can fill in ? with H and G: $x_{1} + \frac{Y_{1} \times S_{2}}{Y_{1} \times S_{2}} \sum_{Y_{1} \times S_{2}} \sum_{Y_{2} \times S_{2}} \sum_{Y_$

 $\frac{lemma 1:}{(\pi_{i}(X, x_{o}), *) \text{ is a group}}$

<u>Proof:</u> <u>identity</u>: let e: {o,1] → X: t → X. Constant loop <u>note</u>: [e]*[x]=[x]=[x]*[e] . this line is s=2t-1 t= s+1 $\frac{P_{icture:}}{x_{0}} \xrightarrow[x_{0}]{x_{0}} \frac{translate:}{x_{0}} \xrightarrow{t^{2}} \frac{translate:}{x_{0}} \xrightarrow{t^{2}} \frac{t^{2}}{x_{0}} \xrightarrow{t^{$ <u>inverses</u>: given $[\delta]$, then $[\delta]^{-1} = [\overline{\delta}]$ where $\overline{\delta}(t) = \delta(1-t)$ $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$ $|+(t_{l}s) = \begin{cases} Y_{s}(2t) & t \leq \frac{1}{2} \\ \overline{y}_{s}(2t-1) & t \geq \frac{1}{2} \end{cases} = \begin{cases} \delta(2s+1) & t \leq \frac{1}{2} \\ \overline{y}_{s}(2t-1) & t \geq \frac{1}{2} \end{cases}$

<u>Associativity</u>: need to see $(v_1 * v_2) * v_3 \sim v_1 * (v_2 * v_3)$ <u>Picture:</u> $v_1 v_2 v_3$ <u> $v_1 v_1 v_3$ </u> <u> $v_1 v_1 v_3$ </u> <u> $v_1 v_1 v_3$ </u> <u> $v_1 v_1 v_3$ </u>

Ħ

So f induces a map

$$f_{*}: \mathcal{T}_{i}(X, x_{0}) \rightarrow \mathcal{T}_{i}(Y, y_{0})$$

$$[Y] \longmapsto f_{0}Y]$$

$$[Y] \longmapsto f_{0}Y]$$

$$f_{*} is a homomorphism$$

$$\frac{f_{*} is a homomorphism}{f_{*} is a homomorphism}$$

$$\frac{f_{coof}: [Y_{i}], [Y_{n}] \in \mathcal{T}_{i}(X, x_{0})}{f_{i} * \mathcal{S}_{n}(t) = \begin{cases} \mathcal{S}_{i}(2t) & 0 \leq t \leq \frac{1}{2} \\ \mathcal{T}_{2}(2t-1) & Y_{2} \leq t \leq 1 \end{cases}}$$

$$(f_{0}x_{1})*(f_{0}x_{2}) = \begin{cases} f_{0}Y_{1}(2t) & 0 \leq t \leq \frac{1}{2} \\ \mathcal{T}_{2}(2t-1) & Y_{2} \leq t \leq 1 \end{cases}}$$

$$\int_{\mathcal{S}} f_{0}(x_{1} + x_{2}) = (f_{0}y_{1})*(f_{0}y_{2})$$

$$g_{i} = f_{*}([Y_{i}]]*[Y_{n}]) = f_{*}([Y_{i}]] * f_{*}([Y_{n}])$$

exercise:

1)
$$(f \circ g)_{*} = f_{*} \circ g_{*}$$

2) $if f: X \to Y$ is homotopic to $g: X \to Y$ relative to $x_{0} \in X$
then $f_{*} = g_{*} : \pi_{i}(X, x_{0}) \to \pi_{i}(Y, y_{0})$

How does
$$\pi_i$$
 depend on the base point?
let $h: \{o_i, i\} \rightarrow X$ be a path with $h(o) = x_0$ and $h(i) = x_1$
if X is a loop in X based at x_1 , then note
 $h = X + \overline{h} + I = \begin{cases} h(3f) & 0 \le t \le \frac{1}{3} \\ Y(3f-1) & \frac{1}{3} \le t \le \frac{1}{3} \\ \overline{h}(3f-1) & \frac{1}{3} \le t \le \frac{1}{3} \end{cases}$

~

is a loop based at x.

lemma 3:

Remarks:
1) so isomorphism type of
$$T_{i}(X, x_{o})$$
 only depends on path
component of X in which x_{o} lies
2) The isomorphism depends on h !
Proof: ϕ_{h} is a well-defined homomorphism (exercise)
 $(laim) \phi_{\bar{h}}$ is the inverse of ϕ_{h}
indeed given $[X] \in T_{i}(X, x_{o})$
 $\phi_{h} \circ \phi_{\bar{h}}([X]) = [h * \bar{h} * X * h * \bar{h}]$
loop based at x_{o}
 $= [h * \bar{h}] \cdot [X] * [h * \bar{h}]$
but $h * \bar{h} \sim e$ as a bop based at x_{o}
 $S^{O} \phi_{h} \circ \phi_{\bar{h}}([X]) = [e] * [X] * [e] = [X]$
you can similarly chech $\phi_{\bar{h}} \circ \phi_{h} = id$
 $TLEY.$

If
$$f: X \to Y$$
 is a homotopy equivalence, then
 $f_*: \pi_i(X, x_o) \to \pi_i(Y, f(x_o))$
is an isomorphism

to prove this we need

$$\frac{Proof of Th^{eq} + :}{|et g be the homotopy inverse of f so} \pi_{i} (X_{i} \pi_{o}) \xrightarrow{f_{*}} \pi_{i} (Y_{i} f h_{o})) \xrightarrow{g_{*}} \pi_{i} (X, g (f(x))) \\ now g_{*} \circ f_{*} \rightarrow \pi_{i} (Y_{i} f h_{o})) \xrightarrow{g_{*}} \pi_{i} (X, g (f(x))) \\ now g_{*} \circ f_{*} \rightarrow \pi_{i} (Y_{i} f h_{o})) \xrightarrow{g_{*}} \pi_{i} (X, g (f(x))) \\ now g_{*} \circ f_{*} \sim id_{X} so by lemma Z path h st. \\ g_{*} \circ f_{*} = \varphi_{h} an isomorphism \\ so f_{*} is injective \\ similarly f_{*} \circ g_{*} is an isomorphism so f_{*} is surjective \\ \therefore f_{*} an isomorphism \\ f_{*} \circ g_{*} is \\ f_$$

t° • 2

<u>exercise</u>: write out explicit homotopy

Kecap: We have a "functor" (pointed topological) spaces, => {groups, pointed maps } homomorphisms}

homotopic spaces map to isomorphic groups homotopic functions map to the "same" homomorphism

$$NOW \quad \forall - \forall * (\overline{5} * \overline{5}) - (\forall * \overline{5}) * \overline{5} - e_{a} * \overline{5} - S$$
from proof of from proof
lemma 1 even
though 5 a path (all homotopies
 $\overline{5} * \overline{5} - e_{b}$ reliend p(s of path))
There is:
$$\frac{[\pi, (S^{n}) = [1] \forall n \ge 2]}{[\pi, (S^{n}) = [1] \forall n \ge 2]}$$
need lemma
lemma ?:
$$\frac{[emma ?:}{[\pi, (S^{n}) = [1] \forall n \ge 2]}$$
need lemma
lemma ?:
$$\frac{[emma ?:}{[et X = A \cup B]}$$
Then any loop $\delta : [0, 1] \rightarrow X$ based at χ_{0}
can be written as $\forall - \forall i * ... * \forall n$
where each Y_{1} is a loop in A or B based at χ_{0}
Proof of Thes:
$$\frac{[emma ?:}{[et A = S^{n} - [(o_{1}, ..., 0, 1]) \cong R^{n}}$$
A $nB = S^{n} - [(o_{1}, ..., 0, 1] \cong R^{n}$
A $nB = S^{n} - [(o_{1}, ..., 0, 1]) \cong R^{n}$
A $nB = S^{n} - [(o_{1}, ..., 0, 1]) \cong R^{n}$
A $nB = S^{n} - [(o_{1}, ..., 0, 1]) \cong S^{n-1} \# (o_{1}, ..., 0, -1)$
all are path connected
take $\chi_{0} \in A \cap B$
any $[\forall] \in \pi (S^{n}, \chi_{0})$ (on be written as
 $[\forall] = [\forall,] [\forall,] ... [\forall n]]$
where $[\forall_{n}] \equiv \pi (A, \pi_{n})$
or $\pi(B, \chi_{n})$
by lemma ?

but
$$\pi_{i}(A, x_{i}) = \{1\} = \pi_{i}(B, x_{o})$$
 so $[\forall] = [E_{x_{i}}]$
and hence $\pi_{i}(S^{*}, x) = \{1\}$
given $\forall : [e_{i}] \rightarrow X$ a bop based at x_{o}
(law: there exist $0: t_{o} < t_{i} < \dots < t_{n} = 1$ such that
 $mi \ \delta'_{Lt_{n-i}} t_{i} = A \cap B$
and $\forall (t_{i}) \in A \cap B$
given this let $\delta_{i}: [e_{i}, i] \rightarrow A \cap B$
connect x_{o} to $\forall (t_{i})$
and $\forall_{t} = \forall]_{Lt_{n-i}} t_{t_{i}}]$
Note: $\forall \sim \forall_{i} \times \forall_{2} \times \dots \times \forall_{n} \sim [\forall_{i} \times \delta_{i}] \times [\xi_{i} \times \forall_{2} \times \delta_{i}] \times \xi_{2} \dots (\xi_{n} \times \theta_{n})$
loop u' loop i' \ldots loop i'
 $A \cap B$
 $M \cap B$
 M

let n be st.
$$\frac{1}{n} < S$$

now $\Im|_{L^{\frac{1}{n}}, \frac{1}{n}]} \subset A \text{ or } B$
So start with $t_{q} = \frac{1}{n}$ $1 = 0, \dots n$
now if $\Im_{L^{\frac{1}{n}}, \frac{1}{n}]}$, $\Im_{L^{\frac{1}{n}}, \frac{1}{n}}$ both in A or B
the throw out t_{q}
Continuing gives desired partition
 $\frac{Th^{\frac{1}{n}}[O:}{\pi(X \times Y, (x_{n}, Y_{0})) \cong \pi(X, x_{n}) \times \pi(Y, y_{n})]}$
Proof: $\Phi: \pi(X, x_{0}) \times \pi(Y, y_{0}) \to \pi(X \times Y, (x_{n}, y_{0}))$
 $([x_{1}], [x_{2}]) \longmapsto [X \times S]$ where $(X \times S)(t) = (X(t), S(t))$
is an isomorphism
 $\underline{exercise}: i)$ show Φ is well-defined homomorphism
 $2)$ Show Φ is bijection (use projection)

C. Fundamental Group of 5'

$$\frac{Th^{m} II:}{T_{i} [5', (1,0)) \cong \mathcal{Z}}$$
the isomorphism sends $n \in \mathcal{Z}$ to
$$\mathcal{T}_{n} : \{o_{i}, i\} \rightarrow 5': t \mapsto (los 2n\pi t_{i} sin 2n\pi t)$$

<u>Remark</u>: Proof is an example of very important technique that we will see again !

i)
$$\delta(0) = n$$

2) $\rho \circ \delta(x) = \delta(x) \quad \forall x \qquad \forall x$

$$\frac{|emma 12:}{|ifting \rightarrow}$$
a) for each $n \in \mathbb{Z}$, each loop $\mathcal{E}:[0,1] \rightarrow 5'$ based at (10) lifts
to a unique path $\widetilde{\mathcal{E}}_n$ based at n.
homotopy
lifting \rightarrow
b) if $\mathcal{E} \sim \mathcal{E}'$ are bops in \mathcal{E}' based at (10) and $\widetilde{\mathcal{E}}_n$ and $\widetilde{\mathcal{E}}'_n$ are
their lifts based of n , then $\widetilde{\mathcal{E}}_n \sim \widetilde{\mathcal{E}}'_n$ rel \mathcal{E}_0 .

Proof of
$$Th^{\underline{m}}$$
 II given lemma 12:
Given $\delta \in [\delta] \in \pi$, $(\delta'_{1}(i,0))$
lemma 12 a) says $\exists ! \tilde{\delta}_{0} : [o,1] \rightarrow IR$
since $\tilde{\delta}_{0}(1) \in p^{-1}((i,0)) = \mathbb{Z}$ we can define
 $\overline{\Phi} : T_{1}(S'_{1}(i,0)) \rightarrow \mathbb{Z}$
 $[\delta] \mapsto \tilde{\delta}_{0}(1)$
lemma 12 b) say $\overline{\Phi}$ is we ll-defined
 $\underline{\Phi}$ surjective: let $\tilde{\delta}^{n}(t) = nt$ for $t \in [o,1]$
and $\delta^{n}(t) = p \circ \tilde{\delta}^{n}$

clearly
$$\tilde{\delta}^{n}$$
 is a lift based at 0 of the loop δ^{n}
and $\tilde{\Psi}(I\delta_{n}]) = n$
 $\tilde{\Psi}$ is injective:
suppose \tilde{V}_{i} \tilde{V}' ore two loops in \tilde{S}' st. $\tilde{V}_{0}(i) = \tilde{V}_{0}'(i)$
set $\tilde{H}(s,t) = (i-t)\tilde{V}_{0}(s) + t \tilde{V}_{0}'(s)$
and $H(s,t) = p \circ \tilde{H}(s,t)$
Note: $H(s,o) = \tilde{V}(s)$
 $H(s,i) = \tilde{V}(s)$
 $I \in \tilde{V} \sim \tilde{V}'$
 $\tilde{\Psi}$ a homomorphism:
given $[Y], [Y'] = \tilde{T}_{i}(S'_{i}(i,0))$
 $let \tilde{V}_{0}, \tilde{V}_{0}'$ be the lefts of \tilde{V}, \tilde{V}' (based at 0)
 $\tilde{\Psi}[Y]) = \tilde{V}_{0}(i) = n$ $\tilde{\Psi}(IY) = \tilde{V}_{0}'(i) = m$
 $\underline{note}(i) \tilde{V}_{n}'(t) = n + \tilde{V}_{0}'(t)$ since rt. hand side is a lift
and left is unique
 $2) \tilde{V}_{0} * \tilde{V}_{n}'$ is a lift of $\tilde{V} * \tilde{V}'$ based at 0
so $\tilde{\Psi}(IX)[XJ] = \tilde{V} * \tilde{V}(i) = \tilde{V}_{0} * \tilde{V}_{n}'(i) = n + m$
 $= \tilde{\Psi}(IX) + \tilde{\Psi}(IX)$

 $\frac{Proof of lemma 12:}{part a):} \quad let A = 5' - \{(i,o)\} \qquad \qquad about this for general covering space) \\ p^{-1}(A) = U (1, 1+i) \\ i \in \mathbb{Z} \\ note: pl_{A_i}: A_i \rightarrow A \ a \ homeomorphism!$

similarly if
$$B = 5^{1} \cdot [4 \cdot 10^{3}]$$

then $p^{-1}(B) = \bigcup_{\substack{1 \in \mathcal{U} \\ i \in \mathcal{U} \\ i$

exercise: 9(x) continuous (eq[±] for R_x continuous in x :: eq[±] for R_x ∩ S' continuous in x) cleary g a retraction! & Cor 13 Many other applications! i) Fundamental Th[±] of Algebra 2) Borsuk-Ulam Th[±] (abt maps S²→S' and S²→R²) 3) Ham sandwich th[±] : see Hather's Book and suppliment class webpage